
Intro

Accelerating Delivery with
Metrics-Driven Insights

Virtual CTO Summit
June 2, 2020

Jack Humphrey, VP Engineering, Indeed

jackhumphrey.me
linkedin.com/in/leejack

twitter.com/@youknowjack

https://jackhumphrey.me
https://www.linkedin.com/in/leejack/
https://twitter.com/youknowjack

This story starts with a sentiment we were feeling in late 2018.

“Feels like we aren’t delivering
as quickly as we used to.”

Really, that sentiment is a form of hypothesis.

HYPOTHESIS

Restated.

The velocity at which
we deliver software to production
has decreased as we have grown.

So from there, we could have asked this question.

How can we increase velocity
and get more done each week?

But that’s not the right next question.

How can we increase velocity
and get more done each week?

Instead, I think these are the right kinds of questions to ask.

1. Should we care about delivery velocity?

2. How do we define velocity?

3. How do we measure velocity?

4. How do we increase velocity?

Should we care about delivery velocity?

● Delivering faster means learning and innovating faster. And
this really matters to us at Indeed! We want to explore more
ideas and deliver more value, as fast as we can.

● Developers on your team will feel more excited to get things
done, and that will virtuously lead to higher energy and
productivity.

● You’ll have a competitive advantage by getting new features
and improvements to your users faster.

● You may actually reduce your cost per unit of work, if that
matters a lot to your bottom line.

Learn and innovate faster

Harness a virtuous cycle of productivity

Get features/improvements to users faster

Reduce cost per unit of work

VELOCITY
IS A
COMPETITIVE
ADVANTAGE

Whether or not you want to do more with less or, like us, do even
more with more, we advocate adopting the Kaizen philosophy of
continuous, incremental improvement.

I encourage you to read more about Kaizen (if you haven’t already),
but the emphasis is on “good change” (the literal translation), like
streamlining process, or eliminating waste, rework, and excessive
communication.

In order to implement a Kaizen approach, you have to develop
measurements, and you have to be open to learning and
continuously evolving over time.

Continuous, incremental improvement

Focus on “good change”

Measure and evolve over time

KAIZEN

How do we define velocity?

...and can we measure it?

● There are different ways to measure software delivery and velocity.
● There is no silver bullet for measuring velocity.
● You should start with what matters for your organization and work

backwards on reliably measuring that metric for continuous
improvement.

There is no single best metric for
development velocity.

● Throughput is a great way to measure how many features are
complete and can be delivered to customers in a given time
interval

● Higher throughput would mean higher velocity
● Throughput will start to decrease if there are bottlenecks or

increased unnecessary communications in the team

KAIZENTHROUGHPUT
Total number of changes are deployed to
production over a given period of time

Total number of experiments completed
over a given period of time

Indeed Engineering grew a lot in the years leading up to 2019,
adding over 200% more developers who could work on new
features and improvements to our products.

@IndeedEng

> 200% more developers

However, over that time, throughput per developer (the ORANGE
line) declined as we grew. This is a well-understood phenomenon,
when communication and coordination overhead increase, and
ad-hoc decision-making starts to slow delivery.

Over those few years, we added >200% more developers, but we
only saw a 130% increase in the number of new features and
improvements implemented. That’s a 28% decline in throughput
per developer.

You might say this is not so bad, but it’s not the kind of return we’d
like to get on our investment in growing our organization. So we
turned our attention over the last year to driving greater velocity.

@IndeedEng

> 200% more developers
130% more delivery

28% throughput decline

● Delivery Lead Time aka DLT is a way to measure the time it
takes to deliver a unit of work to customer

● Software Development and Delivery can be comprised of
different states like, In Development, In Code Review, In
Merge, In Verification etc for different teams

● DLT is sum total of all the time it takes to spend in a particular
state and the wait time between those states

● In this scenario, total DLT is 12.5 days
● Teams that are driven to provide faster value to customers

can focus on reducing the average DLT for a unit of work
● DLT can be reduced by eliminating or reducing the wait times

between the states or by simplifying the process through
automation and CI/CD best practices

Average time to deliver a unit of work
to production (see also: Cycle Time)

DELIVERY
LEAD TIME
(DLT)

DELIVERY LEAD TIME = 12.5 DAYS

4.0d 2.0d 3.2d 2.8d .5d

In
Progress

Pending
Review

Pending
Merge

Pending
Verification

Pending
Closure

Closed /
In Production

● Some teams use story points to measure velocity. This is also
called as scrum velocity.

● Typically, this is measured after the sprint is complete
● Efficient teams will have a predictable scrum velocity based

on the capacity of team

Average # story points per sprint

SCRUM
VELOCITY

● Deployment Frequency is way to measure how frequently the
team deploys to production

● This is not the same as throughput, which is about how
many changes you deliver in a period of time. This is just
the cadence at which that delivery is happening.

● Having a high deployment frequency means that we are
delivering smaller sets of changes in each deployment.
This will give more opportunities for learning and faster
feedback loop.

● This will also reduce the risk as we are delivering more
frequently with smaller sizes.

DEPLOYMENT
FREQUENCY

How frequently you deploy code

Amount of work partially finished and
awaiting completion

WORK IN
PROGRESS
(WIP)

● For higher velocity/throughput, WIP should be lower,
● More WIP will result in greater overhead on context switching,

higher DLT and lesser throughput
● WIP Limits encourage you not to maximize utilization of the

individuals in your team, just like it’s not very effective to
maximize utilization of a highway

Limiting WIP boosts collaboration and
increases throughputWORK IN

PROGRESS
(WIP) Capacity: 95%

Avg Speed: 19 mph

Throughput:
70 cars/segment/hour

Capacity: 60%
Avg Speed: 60 mph

Throughput:
80 cars/segment/hour

Inspiration: https://go.indeed.com/NWZNA8

BTW
Shouldn’t we also worry about quality?

● The later in the delivery process you find bugs that affect your
customers, the costlier they are for you to resolve.

● And that cost impacts the velocity of your team.
● So one metric you can look at is what we sometimes call

“Major Bug Escapes” -- the number of major bugs that get out
into production.

of major bugs impacting customers

MAJOR BUG
ESCAPES

Reqs Design Dev Test Production

C
O

S
T

Another interesting measurement of quality is your change fail
percentage.
This is the percentage of your deploys that fail. In the great book
Accelerate (by Forsgren, Humble, and Kim), they define failed
deploys as deploys that “result in degraded service or
subsequently require remediation"

It’s great if you can deploy smaller releases more frequently, but
not if too many of those deploys require remediation.

CHANGE
FAIL
PERCENTAGE

What % of deploys result in failure?

Another quality delivery metric they discuss in Accelerate is Mean
Time to Restore, or MTTR.

When you have a failure, how long does it take you to restore
service? Even if you have a low Change Fail Percentage, if it takes
you days to restore service, the impact is still huge for your users.
By the same token, if you have a higher Change Fail Percentage,
but a really low MTTR, your users might never even notice those
failures!

MEAN TIME
TO RESTORE
(MTTR)

How long does it takes to restore
service after failure?

How did we choose and
develop our metrics?

To hone in on measuring Delivery Lead Time, we explored our Jira data. Jira is where
we track work, so we knew the data is in there, we just had to figure out how to get it
out.

We explored our Jira data.

Luckily, we were able to do this using Imhotep, our open source data analytics
platform. We had built a dataset of all actions (including state transitions) on Jira
issues over time. Using this, we could look at time spent in different stages of delivery.

Imhotep analysis of
Jira issue state transitions

github.com/indeedeng/imhotep

● We picked DLT as our core metric to measure and improve
● Improving DLT can result in improving other types of velocity

metrics
● Few reasons behind why we have picked DLT amongst

others
○ DLT will enable our teams to deliver faster value to our

customers.
○ If DLT is reduced, developers will have more time to

work on other features or improvements and will
provide them with opportunities to increase their
throughput and productivity

○ To reduce DLT, teams should look at bottlenecks in the
delivery process and will have to either eliminate or
reduce the time spent on these bottlenecks

○ Last but not least, using our Imhotep data set we could
measure the DLT for all the units of work performed by
our developers

WE CHOSE
DELIVERY
LEAD TIME Represents faster delivery of value

Should correspond to higher throughput

Encourages elimination of process bottlenecks

We could measure it using available data!

This is a dashboard that we developed, and this screenshot is from
early 2019. The number at the top is our average (mean) DLT
across Indeed. Almost 15 days.

We were able to further break it down by organizations within
Indeed (the rows) and groups of teams within those orgs (across).
As you can see, there was a lot of variation by team. Some were at
nearly 22 days on average, and others as low as 9 or 10 days. This
was a critical observation, and we looked closely at teams at all
points on the spectrum to see what they were doing and how well
this measurement worked for them.

So again, were started the year around with a mean DLT of 15
days. But notice that the median, or 50th percentile, was 8.2 days,
and 25% of all Jira issues took more than 21 days to resolve. We
had a lot of variation in delivery lead time.

INDEED DLT
IN EARLY 2019 Average 14.9 days

50th Percentile 8.2 days

65th Percentile 14 days

75th Percentile 21 days

Before we even got into 2019 and got that readout, we had a
preliminary measure of 14 days in December 2018, and we
decided to embark on a program through 2019 to reverse the
slow-down in delivery.

We set a goal of 7 days on average by the end of the year. This
appealed to us intuitively, because we felt that most units of work
should be deliverable in about a calendar week.

Reduce average DLT by 50%

2019 GOAL
14.1days

2018

7days

2019

But it was important to me to convince myself it was an achievable
goal.

Is that even possible in less than a year?

I looked at scenarios based on 2018 data, and I saw that one way to hit our goal for
getting the average to 7 days would be to eradicate the really long DLTs, and get all
issues’ DLTs under 14 days. One top of that, we would need to see DLT decreases of
at least 30% across the board.

If we managed all that, our median would drop from 8.2 days to 5.8 days.

DLT for all issues < 14 days

DLT decreases 30% or more for all issues

→ Decrease median DLT from 8.2 to 5.8 days

IS THAT EVEN
POSSIBLE?

One way to get avg DLT < 7 days

But I made these points very clear to senior leadership.

WHAT I TOLD
SENIOR
LEADERSHIP

“Our goal is ambitious”

“Reaching 7 days will not be easy.”

“There is no single organization change that will
get us there.”

“It will require effort from almost every product
development team.”

What did we actually do?

As I noted, we set a goal.

Reduce average DLT by 50%

DEFINE THE
GOAL

14.1days

2018

7days

2019

●

Communication from senior leadership

Newsletters, videos, emails, company
updates, Q&A

Repeated on a regular cadence
COMMUNICATE

This was crucial, every group set a DLT improvement goal. And we
tracked and reported to leadership the progress. Here we see that
in Q2, every group was making progress to reduce their DLT.

Every group/team set a DLT goal.

ALIGN
TEAM
GOALS

Delivery Lead Time by Group, Q1 Vs Q2

We built tools to help teams better understand their Delivery Lead
Time. This is a screenshot from Peregrine, an interactive
dashboard we built for this purpose. In this view, a team can
examine how all the different stages of delivery contribute to DLT
over time. This allowed teams to focus in on where the biggest
opportunities for improvement were.

DELIVER
INSIGHTS

We built tools to explore DLT.

Senior eng leaders from around Indeed led workshops to share
techniques for improving velocity. This helped people take the
insights from Peregrine and attempt different process changes to
address them.

PROVIDE
TRAINING AND
SUPPORT

We offered velocity workshops.

●

ALIGN
INDIVIDUAL
INCENTIVES

We encouraged leaders to value
individual contributions to velocity
improvement.

We modified performance/career
rubrics to clarify this value.

●

MEASURE AND
REPORT ON
PROGRESS

Dashboards

Slack notifications

Content widgets

Leadership reviews

Company updates

Along the way, I heard concerns from developers. Here are three.

Developers had some concerns.

People have heard me talk about Goodhart’s Law, which says that
when a measurement becomes a target, it ceases to be a good
measurement. This is something you have to actively work to
counteract when you have a goal based on your metric. And we did
that be constantly reminding people that hitting the number is not
what matters.

CONCERN
Won’t people just game the stats?

We encouraged your teams to focus on what matters.

What’s important is not hitting the number, but getting the benefit:
Exploring more ideas, delivering more value, and maintaining quality while we do it.

A continuously, iteratively improving, in ways that are meaningful to the people doing
the work.

Explore more ideas

Deliver more value

Maintain quality

Embrace continuous improvement

FOCUS
ON
WHAT
MATTERS

Monitor related metrics and dig into the data. We expected to should see increases in
deploy throughput and experiment throughput as DLT decreases. And watching a
metric like major bugs reaching production will let us know if we’re sacrificing quality
in the name of going faster.

OBSERVE
CORRELATED
METRICS

Throughput (issues, deploys,
experiments)

Major production bugs

The answer to this concern was easy: you won’t be evaluated
based on your individual DLT.

CONCERN
How will I be evaluated on this metric?

Instead, we focused on what teams could accomplish together.

Don’t evaluate individuals using DLT
metric.

Celebrate when teams achieve real
velocity improvements!

FOCUS ON
TEAM
SUCCESS

Lots of people found issues with the way we measured DLT. It
certainly wasn’t perfect.

CONCERN
This metric is sometimes wrong!

But people were usually convinced that despite not being perfect, it was still generally
useful.

BUT IS IT
USEFUL?

Will it encourage the right action?

Is it meaningful in aggregate
…across teams? …over time?

It doesn’t have to be perfect. We
just need to be clear how we use it.

We can iteratively improve how we
measure.

Time to answer the burning question, did we hit the goal?

You may be wondering if we hit the goal.

Nope.

We didn’t reduce company-wide DLT
to 7 days on average. But...

We did not, but we were very happy with the reduction we
accomplished.

12 weeks ending 2019-12-15:
● DLT 8.5 days (from 14.1; 40% decrease)
● 35% increase in # Jira issues
● 24% increase in assignees, 8.5% increase in issues/assignee

RESULTS
14.1days

2018

8.5days

2019

Mean DLT reduced 40%

I was especially happy with the median reduction.
12 weeks ending 2019-12-15:

● DLT 8.5 days (from 14.1; 40% decrease)
● 35% increase in # Jira issues
● 24% increase in assignees, 8.5% increase in issues/assignee

RESULTS
8.2days

2018

5.3days

2019

Median DLT reduced 35%

And I’m very happy to report that we reversed the trend, and
started increasing our throughput.

24% more developers contributing

35% increase in issues delivered

8.5% increase in developer throughput
RESULTS

Throughput increased

What can you take away from our story?

What does it mean for your domain and
your teams?

How do your teams feel about it?

How will you measure it?

Do you need to use metrics to drive
improvement?

PUT
VELOCITY
IN CONTEXT

Focus on continuous improvement

Develop metrics & iterate on them

Monitor for undesirable outcomes

Celebrate all the wins

PRACTICE
KAIZEN

Special thank you to my colleague Siva Dosapati, who helped
create a previous, longer-form version of this talk that we delivered
at a conference last year.

go.indeed.com/indeed-eng-blog

blog, talks, open source, and great ideas

Thanks!

